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Abstract--The method of integral relations is used to derive a nonlinear "two-wave" structure 
equation for long waves on the surface of vertical falling liquid films. This equation is valid in a wide 
range of Reynolds numbers and reduces to the known equations for high and low Re. Theoretical data 
for the fastest growing waves are compared with the experimental results on velocities, wave numbers 
and growth rates of the waves in the inception region. The validity of theoretical assumptions is also 
confirmed by the direct measurements of the instantaneous velocity profiles in a wave liquid film. 

1. I N T R O D U C T I O N  

This work is concerned with studying the long waves always existing on the surface of 
vertical falling liquid films, which are extensively used in interphase heat and mass transfer 
processes in chemical technology and energetics. These waves can significantly influence the 
transfer processes, and in the case of short test sections and moderate liquid flow rates they 
are ordered and two-dimensional. To estimate the transfer coefficients for the wave flows of 
films one should be able to calculate the nonlinear wave regimes dominating in wave 
formation on the surface of the above films. 

Most known publications on the nonlinear waves are devoted to the calculations of either 
nonstationary or stationary waves at low and moderate flow rates, respectively. But there is 
no universal nonlinear nonstationary equation which would generalize the available 
approaches and be valid in a wide range of conditions. The aim of the present study was to 
derive a universal model equation for nonlinear nonstationary waves on the film surface and 
to substantiate the validity of the applied approach on the basis of experimental and 
theoretical data. 

The stability of vertical falling liquid films was studied in terms of the Orr-Sommerfeld 
equation by Benjamin (1957), Yih (1963), Whitaker (1964), and Krantz & Goren (1971). 
Kapitza (1948), Shkadev (1967, 1968), Krylov etal. (1969) and Lee (1969) performed such 
an analysis in terms of the boundary layer equations. 

According to the theory of stability the vertical falling film is unstable at any Reynolds 
number. In experiments the finite-amplitude waves are observed which may be analyzed 
only in terms of the nonlinear equations. It is very convenient to perform this analysis using 
one equation, e.g. for the film thickness. 

Nonlinear wave studies are conditionally subdivided into two groups for moderate and 
low Reynolds numbers. Kapitza (1948) was the first to analyze the film surface stationary 
waves at moderate Re. He derived a third order stationary equation for the film thickness 
and studied its linear approximation. Actually he found the condition for the neutral wave 
regimes and obtained the expression for neutral wave velocity and length on a film. He also 
tried to predict the equilibrium wave amplitude from the balance between the energy 
dissipation rate and the gravitational work and the additional hypothesis on the minimum 
dissipation function for the actual wave flow regime. Kapitza's theory is not rigorous in many 
respects, it is based on physical arguments rather than on a strict derivation (e.g. his 
attempts to define the critical Reynolds number and the wave amplitude). Nevertheless his 
approach, based on the boundary layer type equations and the method of integral relations, 
has given rise to numerous studies on its development. 

From Kapitza's followers, Shkadov (1967, 1968, 1973) and Lee (1969) should be 
mentioned. Shkadov studied nonlinear stationary waves at moderate Reynolds numbers on 
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the basis of the boundary layer type equations for long waves and the method of integral 
relations. Periodic solutions were found as expansions in harmonics. Retaining the first two 
harmonics in the solution, Shkadov determined the basic wave characteristics including 
amplitude, by the additional harmonic amplitude equation and the minimum film thickness 
hypothesis similar to that suggested by Kapitza. 

A similar study was performed by Lee (1969) where the problem of the stationary waves 
was solved on the basis of Kapitza's equations by the Bogolyubov-Krylov method. 

Thus all the nonlinear wave regime studies at moderate and high Re were performed on 
the basis of Kapitza's type equations in the boundary layer approximation. The dynamic and 
continuity equations are reduced to one, assuming that the waves are stationary and the 
solution is a simple wave. 

Beginning with lvanilov's study (1961), the "narrow bands" method which consists in 
expansion of the solution in h/X  powers, where h is the film thickness and X is the wave 
length, is used for the analysis of long waves at low Reynolds numbers. The equations 
comprise the h/X  • Re products, therefore to ensure the expansion convergence it is 
necessary that Re ~ I. 

Some long-wave theory equations of various accuracy were obtained from the complete 
system of the Navier-Stokes equations by Ivanilov (1961), Benney (1966), Pashinina 
(1966), Gjevik (1970) and Maurin et al. (1977). A detailed analysis of the solutions and 
their stability is given by Nepomnyashchii (1974, 1977). Petviashvili and Tzvelodub (1978) 
and Tzvelodub (1980) obtained solutions for both the stationary periodic waves and the 
stationary two- and three-dimensional solutions on a liquid film at Re ~ I. 

Thus the present situation in the theory is as follows. The flow stability has been studied 
on the basis of the Orr-Sommerfeld and boundary layer equations. The nonlinear wave 
motion at low Reynolds numbers has been analyzed by the Benney-Gjevik type equation 
which permits us to investigate both the nonstationary and the stationary wave solutions. 

For the moderate Re no model nonstationary equation is known. There are only those of 
the Kapitza's type equation for the analysis of stationary wave regimes. One attempt to 
derive a model equation for high Re was made by Nakoryakov & Shreiber (1973). There is a 
certain necessity for a general nonstationary nonlinear wave equation which would general- 
ize the known approaches. The requirements which should be met by this equation are 
obvious. It should ensure the analysis of stability and reduce into the Benney-Gjevik 
equation at low Re. In the stationary case it should coincide with Kapitza's type equation and 
at high Re reduce into the Nakoryakov & Shreiber's equation (1973). An attempt to derive 
such an equation is reported in the present paper. 

As far as the experimental studies are concerned, only a few publications whose results 
may be compared with the theoretical models should be mentioned. They are Kapitza & 
Kapitza (1949), Jones & Whitaker (1966), Strobel & Whitaker (1969), Krantz & Goren 
(1971), Portalski & Clegg (1972), Pierson & Whitaker (1977) and Nakoryakov et al. (1975, 
1976, 1977). This is due to the fact that the film wave theory has been fairly well developed 
only for the two-dimensional periodic waves of small amplitude of almost sinusoidal form. In 
practice the two-dimensional regular wave regimes are usually observed at Re ~ 5 - 20 near 
the wave inception line. In other cases the film waves are three-dimensional, irregular and 
their form is far from being sinusoidal. Therefore almost all experimental studies are 
actually the statistical analyses of wave characteristics without any separation of two- and 
three-dimensional, stationary and nonstationary waves. Certainly, this information cannot 
ensure complete verification of the theoretical models and cannot give a physical description 
of the wave motion. 

In the above experimental studies it was possible to investigate the two-dimensional 
regular wave regimes either near the wave inception line in a limited range of variations of 
the flow rates, liquid properties and wave characteristics or using an artificial regularization 
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method, i.e. the superposition of external disturbances. To verify the stability theories, 
Krantz & Goren (1971) excited waves by wire vibrations at the initial film section. In our 
studies similar to Kapitza, Kapitza (1949) the stationary wave regimes were mainly studied 
via wave excitation by pulsations of the liquid flow rate. 

Wave studies in the inception region show that the behaviour of natural growing waves is 
described by the linear theories of the fastest growing waves. Most studies, however, provide 
data only for the velocity and wave number, without mentioning that it is the two- 
dimensional flow that is under study. The theories of steady finite amplitude waves are in 
agreement with the experimental results only for the almost sinusoidal waves in the range of 
Re ~ 5-30. 

The literature lacks data on the experimental instantaneous velocity profiles measure- 
ments in a wave liquid film, though such measurements are of extreme importance, since 
many theories utilize various velocity distribution hypotheses. 

Here we present experimental data on the wave characteristics and instantaneous 
velocity profiles for the strictly two-dimensional waves. 

2. DERIVATION OF WAVE E Q U A T I O N  

Let the Navier-Stokes equations and the boundary conditions for a verticle falling liquid 
film (figure 1) be written in the dimensionless form: 

Off _Off" _0ff 3 ~ (  a2~'`2 a2u" / a,~ 
a-~" + u ~ + v ~ - , R-'--'-e + ( .  Re tOY" + a.~iJ - a-~' [I] 

e3 a2~- c1~ 
Re cgy. 2 Oy' [2I 

[31 

a ty  -h ,  

1 - d(a~/ay.)  2" ~ + ~ + ~ - o, [4] 

31/3 Fi I/3 E 2 02h'/ay. 2 2e a~[1 + ,2(ah/ay.)2] 
A P - -  

Re 5/3 [1 + d(af i /aS) ' ]  3/2 + Re 0"-y [1 - d(ah-/aS)2] ' [5] 

L) 
1 

h 
- -  7 '  

Figure 1. Schematic representation of a vertical falling liquid film. 
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at y - O, 

~ - 0 ,  ~ - 0 ,  [6] 

at y - h, 

aK - aK 
b-= -~ + U ~--~. [7] 

The conditions are: [4] is the vanishing tangential stress component, [5] is the continuity 
in the normal stress component and [7] is the kinematic boundary condition on a free 
surface. Here 

- uluo, ~ - (vluo)Llho, £ = x/L,  y -Ylho,  

- tuolL ,  P - P I ( p u 2 ) ,  ~=holL, Re=qo/v ,  h= h l ho ,  

film number Fi - O'3/(p3gP 4) are introduced, ho and Uo are determined from the Nusselt 
formulas for a smooth laminar film flow 

R e -  qo/p-gh~/(3v 2) - houo/v. 

L is the characteristic longitudinal scale, e.g. the wavelength ~,. Let a long-wave process be 
considered, provided that L ~ ~, ( << 1 and Re ~ 1/~ :~ 1. 

Separate the disturbed part u' of the longitudinal velocity u and set u' ~ el Uo, h ~ ~. In 
[1-7] retain the terms of orders 1 and E. Hence we come to the boundary-layer type 
equations: 

a ~ -  _ 0 ~ -  _ 0~" 3 1 0 2 ~  - a P  

a--7+uT~+vay ~ R - - - - ~ + - - - -  , [81 • ~ • Re Oy 2 0£ 

a# 
~-~ - 0, [9] 

0~ a~ 
+ - o, [io] 

0"-~ oy 

with the boundary conditions 

0~ 
- - - 0  a t y -  h, [11] 
o y  

31/3Fil/3e2 02~" 
A P - -  ReS/3 0£ 2 a t y - h .  [12] 

Conditions [6] and [7] remain unchanged. Using [9] and [12], rewrite [8] in the form: 

a£  _ 0~- _ 0~- 3 1 02~ - (3 Fi) 1/3 e2 0 3 h  - 
a--T+u +.ay ~ R - ~ + - - - -  + - -  - -  [13] • ( • Re OF 2 Re 5/3 0£ 3 " 

For the derivation of [13] it was taken into consideration that for real liquids Fi v3 is high 
(e.g. for water Fi I/3 ~ 104). 

It should be noted that with the properly chosen relation between ~ and ~1 the final system 
of equations [ 13], [ 11 ], [ 10], [6] and [7] remains the same in the range of Reynolds numbers 
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Re - 1 - |/~2. But the more rigorous range of applicability of the above system should be 
specified in the coordinates {Re, Fi, e, el }. 

In what follows the method of integral relations (the Karman-Pohlhausen method) is 
used. Its main disadvantage is the necessity to set the film instantaneous velocity profile a 
priory. It is difficult to estimate its possible error, though it is likely that for the long waves it 
cannot be too high. The experimental results by Nakoryakov et al. (1977) on the direct 
determination of instantaneous velocity profiles in a wave liquid film (partially given in the 
present paper) show a fair approximation to the velocity profile by a self-similar polynomial 
for the two-dimensional waves of at least moderate amplitude. 

Now we turn from the initial system of equations [13], [11], [1O], [6] and [7] to the 
integral relations. In this case it will be convenient to rewrite these equations in the 
dimensional form: 

OU OU OU 02U or 03h 

at + u ~  + V ~ y - ~  + g + pax 3, 
[14] 

Ou cgv 
+ - : -  - o,  [151 

Ox ay 

Oh Uah 
v - - ~  + Ox a t y - h ,  

¢3u 
- - - 0  atyffi h, 
or 

u f f i v - O  a t y - O .  

Integrate [ 14] and [ 15] over the film thickness 

~-dy+~  ~ d y +  o ~ d y - - ~  ~ -o 

o'h 03h / 'k Ou ] + g h + - - ~  [ o. p a~'Jo ~ d y + ~  - y-h 

[16] 

In the first integral of [16] take the derivative out of the integral sign 

fo h Ou 0 foh uOh -~ dy - ~ u dy - Ot " 

Perform the similar transformations in other integrals of [16], then allowing for the 
boundary conditions and taking the third integral in [ 16] by parts we obtain the equations: 

0 £ .  0 £ .  p[Ou I ch 03h 
Ot u dy + ~x u" dy - - ~Oyh. ° + gh + --p ~,Ox 3 [17] 

Oh 0 foh O-~ + ~x u d y - O. [18] 

Proceeding from the method of integral relations and the results of our experiments, the 
velocity profile is 

u - U .  f (~ )  ,7 - y /h  
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The function f (~ )  can be approximated, e.g. by the second power polynominal with 
coefficients satisfying boundary conditions [6] and [1 1] 

f (~)  = 2n - n 2 [19] 

Now we introduce the instantaneous liquid flow rate in a film and express it as a function 
off.. 

q -  f o h u d y = u h  fol fdn.  

In a similar way we have: 

(ou), 
/o - " ' "  /o ' : '  d", .o h ,., : 

Using these expressions and introducing the coefficients 

"1 lfdll-~i' ,~'oifidl/-% ~ ,,-o-" X - I ' I  ~2' 

rewrite [ 17] and [ 18] as thickness and flow rate equations 

Oq h Oq q2 Oh 
at  + 2x ~x - X ~  ax 

Ku q ~h 03h 
6 h 2 + gh + __p max 3 , [20] 

Oh Oq 
o-7 + ~ = o. [21] 

Represent the overall flow as: 

q ~ q o + q ' ,  h - h o + h ' ,  [22] 

where prime denotes the disturbed part of value, and substitute these expressions into [20] 
and [21]. Letting q' ~ qo and h' << ho and retaining the terms of the order of h '2 and q'~ and 
higher, we obtain the nonlinear equations for the thickness and flow rate disturbances with 
the nonlinear terms in the right-hand side: 

Oq' 2Xqo Oq' ~ Oh' xp q, aho O'h' 
0-7 + h----o- ax X~o ~ + ~hl - 3gh' , Ox 3 [23] 

:,,,h':' ' ,,,<V 2xqor,,,oq, _ , h °  ,oq' Oh'l + 
ho ho ot hl L ox + qo q ~x -q'  ox } ' 

~ 0o [24] 

From the system of [23] and [24] turn to one nonstationary equation for thickness 
disturbances. For this purpose let [23] be differentiated with respect to x and the derivative 
Oq'/Ox in the linear terms be replaced via continuity equation [24]: 

a l h  ' 2Xqo 02h ' ql O 2h' xu Oh' Oh' 
o: + h---o- o~o~ + x ~-g-~ + ~ ~ + 3g ~ 

ahoc~h ' 6 , . , 0 h '  2 0 ( O q ' )  
+ . . . .  ~7 [25] p Ox' Toh~X+K~x h' 

2 ' _ q ,  Oh'] x__qo O_. [t., Oq' ho , Oq' 
+ hl Ox L'" Ox + ~o q ~ oxj" 
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To exclude q' and Oq'/Ot from the nonlinear terms the following considerations will be 
used. In continuity equation the variables x and t are substituted by ~ and t, where ~ - x - Ct 
and C is the wave velocity assumed to be constant for quasistationary waves. The experi- 
ments show that in many cases the observed waves may be considered as weak-dispersive and 
weak-nonlinear. Then 

Oh' Oh' Oq' 
[261 

For the quasistationary process the wave profile in a moving coordinate system deforms only 
slightly. As a result we pass from [26] to the approximate equation COh'/O~ - Oq'/O~, then 

q' - Ch', [27] 

a c a - -  [28] 
Ox" 

For the stationary waves equations [27] and [28] are exact. 
Now substitute [27] into the nonlinear terms of [25], which at Re - 1 - 1/e2 always 

have a lower order of magnitude than the main terms. The derivatives of the form CO/Ox 
appeared in the nonlinear terms will be replaced according to [28]. As a result we obtain the 
following nonlinear nonstationary thickness disturbance equation: 

Tt + Co Tx + --. + C, Tx + C2 Tx 

66hog h' Oh' (X - 1) gh~ 0 {h' Oh'l 
+ - 26' o2 Ko Ox ~2 Ot ~ Ot ] [29] 

0 . 3 04h' 
+ - ~ ho - O, 

r pu 

where Co - 3qo/ho, CI - qo(x + ~ - x' /ho, C2 - qo(X - x / ~  - x ')/ho. 
Equation [29] has a typical two-wave structure, i.e. the wave process on a liquid film 

includes a lower-order wave with velocity Co and waves described by the derivatives of higher 
orders with velocities Ci and C2.t The derivation and analysis of such equations are discussed 
in detail by Whitham (1974). Show that [29] may be used for the analysis of the falling film 
stability and the process of nonlinear wave formation. 

In further considerations approximation [19] will be used for the velocity profile in a 
vertical falling liquid film. This profile will be utilized to calculate the coefficients: 

- 2 / 3 ,  r - 2 ,  X - 1 . 2 ,  Cl- l .69Uo,  

C2 - 0.71Uo, Uo - qo/ho - ghg/(au). 

After substituting these coefficients into [29] we obtain: 

h, + 3 o ~ + 1.69Uo ~ + 0.71Uo + 
::h' 

3pv Ox 4 
- 0 ,  

[30] 

tThe physics of the C, and C, appearance is connected with the loss of stability by the initial flow in the sense of 
the Orr-Sommerfeld Stability. 
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or in the dimensionless form: 

(~ O) H 6H aH 2 Re(hole ( ~ )  + 3 ~  + aH- l-~ ~z/~ H 

+ -~-k~- ] + 1.69 ~ +  0.71~-~ H +  Weir - )  ~ - -z -  0. 

[31] 

From [31 ] one can easily pass to the conventional form of writing with one scale h0, letting 
L - he. 

If one assumes that the wave is stationary, i.e. h' = h'(x - Ct), [31] will correspond to 
the Shkadov's (1967) and Lee's (1969) equations. 

Consider the case ho/L << 1, Re ~ 1. It can be seen that the wave process is based on the 
kinematic wave OH/Ot + 3OH/OH = O. According to Whitham (1974), substitute the time 
derivative in the higher-order wave using the relation 0/07 - -30/0H,  neglect the second 
nonlinear term and thereby pass from [31] to the equation 

OH OH OH ~ /ho\ a 'H /ho\' a 'H + + + wokT ) . _ o .  [321 

This type equation has recently been used by Gjevik (1970), Maurin et al. (1977), 
Nepomnyaschii (1974) and Petviashvili & Tzvelodub (1978) as the basic equation for the 
analysis of nonlinear waves on vertical falling films. 

Come back to [31] and consider the case when Re >> 1 and the wave process is based on 
the second-order waves. Separating the streamwise waves OH/O~ + 1.69 OH~OH = O, 
substituting 0 / 0 / -  - 1.69 0/0H and integrating over x, we arrive at: 

OH OH 2 7 aH (L) H 
0-~ + 1.69~-~+ .0 H ~ - ~ - 4 . 0 1  ho Re 

[331 

9.2[L\ 2 We (ho12 03H 
- ~ e e [ ~ ) H  - 3.06~-~-e ~ -  ] ~ - ~ = 0 .  

This equation was obtained by Nakoryakov & Shreiber (1973) as a model to describe the 
film surface wave at high Re. 

Thus in the case of a longwave process at low Reynolds numbers the energy transfer from 
the mean flow to a kinematic wave follows the higher-order wave mechanism. This leads to 
the appearance of the energy source term with the second derivative (or "negative" viscosity 
term) in [32]. 

At high Re the energy is transferred into the higher-order wave, which can be referred to 
as "inertial," by the kinematic wave (a linear term of "low-frequency" energy source in 
[33]). 

The analysis of the film surface waves in a wide range of Reynolds number should be 
made on the basis of [31 ]. The exact range of its applicability can be established only from 
the comparison between its solutions and the experiments and accurate numerical calcula- 
tions. Such a comparison for the linear waves is given in section 6. 

3. L I N E A R  A N A L Y S I S  OF F I L M  F L O W  S T A B I L I T Y  

Let the linear equation corresponding to [31 ] be written as 

0--7+3~-+-5- +1.69~ ~?+0.71~ + e-~-~=o. [34] 
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From [34] derive dispersion equations for the temporally growing (damping) waves 
letting H as: 

H - Ao exp[i(k~ - f~t')] - A0 exp[ik(~ - (7~)] . exp Bt', 

where k - 2a'ho/)~ is the real wave number, f~ - o~ + i~ is the complex frequency which is 
made dimensionless by using ho and uo, and (7 - C/uo is the real part of phase velocity. After 
substituting H into [34] and separating real and imaginary parts we arrive at 

-(~ + 3 - 2/3C/~Re + 0, 88 Re - 0, [351 

3/~ - k 2 Re(C 2 - 2, 4C + 1, 2) + Re~ 2 + 3 We • k ( - 0. [36] 

Similar equations were derived by Shkadov (1968) directly from the system of [ 17] and [ 18], 
but the dispersion equations had not been analyzed. 

From [35] it follows that 

3 C - 3  
R e = - 2 ( ~ _  1,2" [37] 

Excluding ~ from [36] with the help of [37], derive the quadratic (with respect to k2Re 2) 
equation 

R e  3 
(k Re)' - (k Re)2 ~-W-~e • ( C -  C t ) ( C -  C2) - 

where C, - 1.69, C2 - 0.7 I. 
Its solution is: 

3 Re' ( b  - + 0.6) 

4 We (C - 1.2) 2 
-0, 

R e  3 
(k. Re) 2 - 6 We (~ - C')(C - (~2) 

• [l + q 27 We (C7 - 3)(¢~ + 0.6) ] .  [381 
l + Re' ( ( 7 -  1.2)2(C- C7,)2(C " - (72) 2 

The results of computer calculations are given in figures 2 and 3. 
From [36] and [37] it follows that the neutral waves exist if 

/~-0, C-3, k -  ~-e/We, [39] 

Waves with C7 > 3 are exponentially damping, while those with C7 < 3 grow. The asymptotics 
of the dispersion curves in the region of C" > 3 is obtained from [38], provided that the 
right-hand term in the radicand is neglected 

q 25 We 
(7 -  1.2 + 0.49 1 + -~--~e k2. 

For Re ~ I and not very low k (capillary ripples in front of the large waves propagating over 
the thin residual layer) we have 

- 1.2 + k q3 We/Re. [40] 
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Figure 2. Dispersion curves for two-dimensional waves on vertical falling liquid film. 

In the coordinate system moving at a velocity of 1.2Uo, [40] exactly coincides with the 
dispersion equation for the capillary waves on "shallow" water. 

The analysis of [37] shows that the maximum growth rate corresponds to the minimum 
phase velocity. Hence the curve of the fastest growing waves intersects the dispersion curves 
in figure 2 at the points of minimum phase velocities. For an accurate determination of the 
characteristics of fastest growing waves come back to [36] and [37]. 

Rewrite [37] as: 

- 1.2 + 1.8/4, [411 

where # - 1 + 2/3 B Re >_ 1. 
After substituting [41 ] into [36], differentiate the obtained expression with respect to k, 

and allowing for the extremum condition 0#/0K - 0, we obtain 

02  /Re3/13"5 ) 4~/4Re3 k .  R e -  . 1 - l )  

Finally, after substituting [41] and [42] into [36] we arrive at: 

[42] 

Re3 ~ 4 ( ~ 2  - -  1) 3 • 10 3 

We = (~b 2 - 13.5) 2 6.4 [43] 

The maximum growth rate is 

3 ( 4 -  1) 
2 Re [44] 

$ 

-3 

J 

,°¢ 
gO ° t0 ¢ 

Figure 3. Temporal growth rates on a film. 
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To pass from the temporal growth rate fl to the spatial growth rate ( - a )  measured in the 
experiments, the known Gaster's transformation: 

[4s] 

should be used. Here it has been taken into account that for the fastest growing waves 
OC/Ok - O. The numerical calculation shows that in terms of the problem formulates the 
temporal and spatial growth rates are related by [45] with sufficient accuracy. 

Thus the system of [41-45] describes all the characteristics of the fastest growing 
waves. 

Since Re and We enter into the dispersion equation as Re3/We ratio, it should be 
transformed so that only one flow rate parameter, Re, will be used. 

Re3/We - 32/3(Re/Fil/n)H/3. 

4. EXPERIMENTAL PROCEDURE 

Wave experiments in the inception region were performed on a set-up described by 
Pokusaev & Aleksecnko (1977). Liquid fed out of the constant-level tank through a liquid 
distributor is falling over the outer surface of the test section, which is a 1 m long plexiglass 
tube (~  - 60 ram). Due to the experimental requirements, for the instantaneous velocity 
profile measurements we used a stainless steel tube (~  -60 .8  mm) with high-polished 
(mirror) surface. 

Liquid was fed to the test section through a 70 mm long and 0.5-1 mm wide annular 
orifice. The main experimental difficulty was to ensure a two-dimensional flow of the wave 
liquid film. For the uniform humidification the test section was strictly vortical and the 
annular gap and coaxility between the liquid distributor and the test section were 
fine-adjusted until the two-dimensional (annular) waves were obtained. This adjustment was 
possible due to a small clearance between the setting surfaces of the test section and the 
liquid distributor. 

Liquid film is extremely sensitive to the external disturbances, e.g. to vibrations induced 
by the operating pump. Therefore the experiments were performed only with a switched.off 
pump and liquid was pumped into the upper tank periodically in an automatic regime. 

As a working liquid we use water-glycerine solutions since they are less affected by the 
surfactants adsorbing on the liquid film as compared to pure water. In addition the 
two-dimensional waves on a water-glycerin film are more stable to three-dimensional 
disturbances. 

Experimentally measured were: instantaneous and mean thickness of the film, wave 
amplitudes, velocities and lengths and the instantaneous velocity profile in a wave flow 
regime. 

The film thickness was measured by a shadow method (figure 4). Power light source I 
(mercury lamp) via condenser 2 tangentially irradiates test section 3 (as illustrated by figure 
4) and liquid film 4 falling over the outer surface of the vertical tube forms a shadow. The 
magnified film shadow pulsations are projected by objective lens 5 to photoelectron 
multiplier 6 and recorded in the analog or digital form. 

The phase velocity of the waves was measured by the phase shift between two 
simultaneous recordings of the instantaneous film thickness which correspond to two 
different points along the tube. 

The accuracy of the absolute thickness and phase velocity measurements is 2-5 and 
5--9%, respectively. 
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# 

a g ¢ 

3 # 2 / 

Figure 4. Scheme of film thickness and velocity profile measurements. 

The instantaneous velocity field in a wave liquid film was estimated by two synchronized 
methods, they are the shadow method for thickness determination and stroboscopic particle 
visualization for velocity measurements. The latter was first used by Cook & Clark (1971) 
and Ganchev et aL (1972) only for the mean velocity profile measurements. The measure- 
ment of instantaneous velocity profile in a wave liquid film is schematically shown in figure 
4. Liquid film 4 with small concentrations of 1-5 # round aluminium particles is falling over 
the outer surface of stainless steel high-polished tube 3. If the particles are recorded by 
camera 7 at side pulse irradiation by lamp 8, the film frame fixes a discontinuous track of one 
particle from which, knowing the frequency and the magnification factor, the particle 
velocity can be defined. The pulse frequency of lamp 8 is set by sonic frequency generator 8 
triggering stroboscope 10. 

With a mirror surface of the test section and photographing at a 0 angle to the normal to 
the surface (fgure 4) the camera will record not only tracks of the real particle but also those 
of the particle virtual image, formed by the mirror, as illustrated in figures 4a-c. By simple 
geometric constructions the formula: 

A 
y 2Ns inoX/n  2 + tan20(n 2 -  I) [46] 

is derived, where N is the magnification factor measured without liquid in the plane parallel 
to the frame, n is the liquid refractivity and A is the distance between real and virtual particle 
images on the photograph film. 

Figure 4a--¢ illustrates typical double t r ack  when the pulse number is 3. Case a is a 
smooth film with only a longitudinal velocity component calculated by the formula: 

u = f .  (x,+, - x i ) / N ,  [47] 

where xl is the longitudinal coordinate of the particle image on the tim at the ith pulse, f is 
the pulse frequency. Case b is a smooth film but also with a transverse velocity component 
equal to 

v - (Y,+t - Y,) • f ,  [48] 

where Yl is the transverse particle coordinate calculated by formula [46]. Figure 4 c is the 
wave liquid film with the surface inclination at a certain angle to the longitudinal axis x. 

The analysis of the profiles of two-dimensional waves observed in the experimental with 
low Reynolds number, shows that this angle reaches the maximum value (23 ° ) only in the 
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region of the leading front of the largest waves. In this case an additional error of the y and u 
determination is 3 and 6.5%, respectively (0 - 30*). For small and large waves (except for 
their leading front) formulas [46-48] can be used. The main experimental errors are: 7% for 
the absolute y values, 2% for its relative values and 4-5% for the longitudinal velocity. 

The particle position in a wave was determined by simultaneous recording of the film 
thickness and the moments of lamp pulses. 

As a rule the photographic film frame contains 5-10 tracks responsible for a small part of 
the film. The velocity field over the total length of the wave was constructed on the basis of 
30-50 frames. It is very important that the waves will be strict-regular and two-dimensional, 
since the velocity distribution is estimated by a set of data for various waves. 

5. INSTANTANEOUS VELOCITY PROFILE IN A WAVE LIQUID FILM 

Numerous literature data are known for liquid velocities in a film, but the literature lacks 
the results of instantaneous velocity profile measurements in a wave liquid film, though these 
data are of special interest for the theory formulation. 

As noted above, the method of velocity measurements requires regular periodic waves. 
For this purpose the film flow was artificially disturbed by liquid flow rate pulsations, as 
done by Kapitza & Kapitza (1949) and Pokusaev & Alekseenko (1977), to form strict- 
regular two-dimensional stationary periodic waves. The picture of stationary excited waves 
at a given Re is determined only by the frequency of imposed disturbances. If the frequencies 
of the natural stationary waves and of the imposed disturbances coincide the wave pictures 
are identical, i.e. the natural wave regime is a special case of the stationary excited waves. 

The results of measurements of instantaneous longitudinal velocity profiles for the 
characteristic value of the Re - 12.4 and two characteristic types of observed waves are 
given in figure 5. Above each wave profile their associated sections are shown. Points 
correspond to the section numbers: I. Selfsimilar parabolic profile plotted by the maximum 
thickness and velocity values; II. Nusselt velocity profile for a smooth laminar film plotted by 
the residual layer thickness. A dotted line is the wave phase velocity. The other characteris- 
tics of wave regimes are listed in table 1. 

The above plots show that in the region of maximum film thicknesses the velocity profile 
changes insignificantly, while at the minimum h values (sections 1 and 9, figure 5 b, and 
sections 2, figure 5 a) it undergoes great changes. In the residual layer region the flow is 
purely laminar and is described by the Nusselt theory (curve II in figure 5 a). The maximum 
liquid velocities in a wave reach values of the wave phase velocities (figure 5 a). 
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Figure 5. Instantaneous velocity profiles in a wave liquid film. Wave characteristics are listed in 
table 1. 
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Figure 6. Dimensionless velocity profile. 

Table I. 

u.  l0 s (h)  h .~  X C C (U) 
m~/s mm mm mm mm/s qo/( h ) qo/( h ) 

Figure 5a 7.2 0.545 I. 12 36 460 2.83 1.27 
Figure 5b 7.1 0.56 0.73 11.8 310 1.93 1.48 

The analysis of the results shows that in a given wave section the greater longitudinal 
velocities correspond to the higher values of the y-coordinate. This points to the absence of a 
stationary vortex even for the waves with so large amplitude as shown in figure 5a (provided 
that C > Um~). 

The results of velocity profile measurements are schematically shown in figure 6 in the 
dimensionless coordinates (y/h; u/U] where h is the local thickness, U is the local surface 
velocity calculated by the velocity of particle-marks, detected near the film surface 
(I - selfsimilar parabolic profile). The wave profiles here are roughly divided into sections. 
In section I the velocity profile is described by the selfsimilar parabolic law. In section 2 the 
velocity profile is less filled as compared to the parabolic one, and corresponds to region II, 
while in section 3 it is more filled (region III). The maximum deviations from the parabolic 
law reach 15%. For section 4 no velocity profile has been plotted due to a great scatter of the 
experimental points. 

6. T W O - D I M E N S I O N A L  WAVES IN THE I N C E P T I O N  R E G I O N  

A vertical falling liquid film at Re - 5-50 can be described as follows. In close proximity 
to the outlet orifice the liquid film is smooth. Then at some distance from the orifice edge due 
to the natural instability of the smooth laminar flow, infinitesimal two-dimensional periodic 
disturbances arise fast growing in the amplitude. At sufficiently large amplitudes the 
nonlinearity is observed and the wave regime becomes stationary and nonlinear. Two- 
dimensional waves are unsteady and soon break into three-dimensional horseshoe distur- 
bances which are essentially non-stationary. 

Data on the evolution of two-dimensional waves in their inception region are given in 
figures 7-9. The film thickness oscillograms were taken at various disturbances from the 
outlet orifice by moving the optical system along the test section. As illustrated by figures 7 
and 8, the arising waves are sinusoidal and their amplitude a - hm~, - hm~ first grows 
exponentially with distance and then becomes constant. For the sake of convenience data on 
the velocity and wavelengths are given in figure 9 as a function of the amplitude which 
directly shows the lincarity of waves in the inception region. 
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It should be noted that the arising waves are not strict-regular, therefore to obtain 
average wave characteristics the signal should be statistically analyzed. However, with the 
properly organized liquid feed its suitable properties and flow rates, fairly regular two- 
dimensional waves can be observed in the inception region. Where possible, we considered 
just these regimes. 

According to the linear theories of wave instability, the waves actually observed near the 
wave inception line, should correspond to the fastest growing waves which is partially 
confirmed in several publications. Thus Pierson & Whitaker (1977) and others reported on 
the experimental data only for the wave lengths and velocities on water films, Krantz & 
Goren (1971) performed measurements only at Re S 1 for oil films. Figures 10-12 
generalize our and other authors' experimental results on the growth rates, velocities and 
lengths of the growing waves and compare them with the linear theories of the fastest 
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Figure  8. Ampl i tude  of  growing waves: y - 2.34 • 10 -6 m2/s ,  6 / p  - 60.2 • 10-* m3/s2; Re  - 36.4 (I),  
15.3 (2). 
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Figure 9. Wave number (a) and phase velocity (b) of growing waves: u - 2.34 • 10 -e m2/s, a / a  - 
60.2 • 10 -6 m3/s z. 

growing waves. For plotting the coordinates were chosen so that our theoretical dependences 
be universal curves. 

The growth rate was estimated by the tangent of the inclination angle of the lines in 
figure 8 plotted in the semilog coordinates: 

-or =(In a ' -  ~21/(x, - x2 I 
" 

The approximating lines were obtained by the least squares method. 
In the region of Re > 10 our experimental data for a water-glycerin solution are in 

agreement with Portalski & Clegg (1972). At Re < 1 the Krantz & Goren's data (1971) for 
oil films are given. 

At Re/Fi t/u < 0.5 the experimental points are well described by various theories: I. 
Present study; III. Benjamin's theory (1957); IV. Benjamin's longwave approximation 
(1957); and VI. Pierson & Whitaker (1977). It should be noted that in the original 
Benjamin's study (1957) the growth rate in formula (5.10) is erroneous (later he corrected 
the mistake), i.e. 0.224 should be substituted by 0.448. In the range of moderate Reynolds 
numbers at Re/Fi ~/1~ > 2 the experimental data are well generalized by theoretical relations 
I and VI and partially by II. 

In figures 11 and 12 neutral curves are also presented for the wave number and velocity 
which, however, significantly deviate from the experimental points. The experimental 
velocities are greatly scattered due to the difficulty of wave characteristics measurements for 
small-amplitude waves of very smooth slope form. 

Table 2. 

~-  106 a/a"  l0  s 
No. Authors Fluid m2/see m3/sce 2 Fi I/ll Re 

1 Present study water-glycerin solution 
2 Present study water--ethanol solution 
3 Present study water-glycerin solution 
4 Present study water solution of 

ethanol and glycerin 
5 Jones & Whitaker (1966) water 
6 Strobel & Whitaker (1969) water 
7 Krantz & Goren (1971) mineral oil 
8 Krantz & Goren (1971) mineral oil 

2.12 65.3 6.78 10--40 
2.12 28.5 5.42 10-27 
3.72 61 5.46 8-48 
2.34 60.2 6.4 15-36 

9.54 6-70 
9.54 6-70 
1 72 0.5-5.5 
1.14 0.25-1.2 
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Figure 10. Spatial growth rates. Experiment: 1. u - 2.34 • 10 -6 m2/s, ¢/p - 60.2 • 10 -+ m3/s2; 
2. Portalski & Clegg (1972), Fi ~/u ,- 5.33; 3. Krantz & Goren (1971), oil Fi u/u ,, 1.19; 4. Krantz & 
Goren (1971), oil Fi I/n *, 1.72. Theory: I. present study (43)--(45); II. Whitaker  (1964), water; III. 
Benjamin (1957); IV. longwave approximation, Benjamin (1957); V. Nakoryakov & Shreiber (1973) 

(linearized equation [33]); VI. Pierson & Whitaker  (1977). 

The plots given in figures 7-12 show that in the wave inception region the behaviour of 
growing waves at the initial stage of their evolution is described by the linear theories of the 
fastest growing waves. Curves I in figures 10-12, despite the simplicity of the equations used 
for their derivation, fairly well generalize the experimental points and are in agreement with 
the other theories in a wide range of Re/Fi I/ll variations, which is one of the arguments in 
favour of two-wave equation [31 ]. 

Letting the results of numerical calculation of the Orr-Sommerfeld equation in the 
Pierson & Whitaker study (1977) be valid in a given range of Re, from the comparison of 
curves I and VI in figure 10 a more accurate conclusion on the applicability field of the 
boundary layer approximation for a liquid film can be made. As seen, the best agreement 
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Figure 11. Wave number of growing waves. Experiment: notations 1-8 in table 2. Theories of fastest 
growing waves: I. present study, [42]-[43]. II. Whitaker  (1964), water; neutral curve V. present 

study [39]. 
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Figure 12. Phase velocity of growing waves. Notations of experimental points--figure 11 and table 
2. Theories of fastest growing waves: I. present study, [41]-[43]; II. Whitaker (1964), water; III.  
Krantz & Goren (1971), oil, Fi ~/n - 1.72; IV. Krantz & Goren (1971), water. Neutral curves: I. 
present study [39] and longwave approximation Benjamin (1957); VI. Krylov et al. (1969), water. 

between I and VI is observed in the range of Re/Fi  ~/H - I - 10. However at Re/Fi  ~/n < I the 
correlation between the theories can also be considered as fairly reasinable, since the 
dependences differ only in the constant numerical coefficient but have the same asymptotics 
with respect to the Reynolds number. A more significant discrepancy is observed at 
Re/Fi  ~/n > 10, since the theoretical dependences have different asymptotics. Anshus (1972) 
considered the asymptotic solutions of the Orr-Sommerfeld equation at Re ---* oo, and they 
are in agreement with the calculations made by Pierson & Whitaker (1977). For the 
comparison we present the asymptotic values of the characteristics of the fastest growing 
waves for two extreme cases of low and high Reynolds numbers at Fi - const. 

R e - - O  Re---* ~ 

Anshus Present study Anshus Present study 

- a  • Re ¢onst • Re ''/3 ¢onst • Re :1/3 const • Re 2/3 const 
k • Re ¢onst • Re t~/~ ¢onst • Re H/e ¢onst • R e  4/3 ¢onst • Re tl/t2 
C/Uo ¢onst - 3 const - 3 ¢onst - 1.5 const - 1.69 

7. C O N C L U S I O N S  A N D  S I G N I F I C A N C E  

A universal model equation to describe nonlinear nonstationary waves on the surface of 
liquid films in the range of Reynolds numbers Re ~ 1 - 1/fl (e is the longwave process 
parameter) was derived by the method of integral relations with the application of selfsimilar 
velocity profiles. The equation is of the two-wave structure which implies that at low Re ~ 1 
the energy is transferred to kinematic waves through the higher-order wave mechanism, and 
at Re ~ 1/fl ~, 1 dominating are the higher-order waves growing due to the kinematic ones. 
In the limiting cases of low and high Re and in the special case of stationary waves the above 
two-wave equation transforms to the known equations, Gjevik (1970), Nakoryakov & 
Shreiber (1973) and Shkadov (1967). 

In terms of the derived equation a linear analysis of the stability was carried out to obtain 
the analytical expressions to describe neutral disturbances, fastest growing waves and 
capillary ripples observed in front of the large solitary waves. 

An experimental system was developed to measure the instantaneous velocity profiles in 
a wave liquid film and the wave characteristics in the region of their formation. The assumed 
validity of the selfsimilarity of instantaneous velocity profiles was supported by the data on 
the instantaneous velocity field in a film for two-dimensional moderate-amplitude waves 
(figure 6). 
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Wave characteristics in the region of wave formation were generalized in the universal 
coordinates obtained from the analysis of the above two-wave equation (figures 10-12). The 
behaviour of linear growing waves on the film surface is shown to be described by the linear 
theories of the fastest growing waves. Calculations by these equations are in good agreement 
with the other known theories in a wide range of the Re/Fi I/n values except the very high 
Re. 

The results indicate that the solutions of the full two-wave equations can describe all 
two-dimensional nonlinear wave regimes observed on the surface of falling liquid films, 
Nakoryakov et al. (1976). 

Acknowledgment--The authors thank V. G. Casenko (Institute of Thermophysics, Novosi- 
birsk) for the numerical calculations. 
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particle tracks spacing 
wave amplitude 
hmu - hmln 
phase velocity 
3 Uo 
1.69 uo 

0.71 uo 
frequency 
function in velocity profile expression 
film number, #S/p3gp4 
gravitational acceleration 
h'/ho 
film thickness 
smooth laminar film thickness 
wave number, 2~rho/)~ 
characteristic longitudinal scale 
magnification 
refractivity 
pressure 
instantaneous volume liquid flow rate per unit width of film 
mean flow rate 
Reynolds number, qo/u 
time 
longitudinal component of surface velocity 
transverse and longitudinal velcocity components 
Weber number, #/pgh~ 
longitudinal and transverse coordinates 

Greek Letters 
a 

% ~, ~ and × 

E 

El 

8 

spatial growth rate factor of amplitude 
temporal growth rate 
coefficients in equation [20] 
long-wave process parameter, ho/)~ 
amplitude disturbance parameter 
y/h 
angular coordinate 

MF II.~'C 
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wavelength 
~, kinematic viscosity 
~ x - C t  
p liquid density 
a liquid surface tension 

function in equation [41] 
~2 dimensionless complex frequency, f~ - o~ + i/5 
¢o real part f/ 

Subscripts 
max maximum value 
rain minimum value 

Superscripts 
' disturbed part of value 

- value made dimensionless by using L and Uo 
~ value made dimensionless by using h0 and uo 
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